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ABSTRACT:

Let R be a commutative ring with 1 and T(R) be its total quotient ring such
that Nil(R) (the set of all nilpotent elements of R) is a divided prime ideal of
" R. Then R is called a ¢-chained ring (¢-CR) if for every T,y € R\ Nil(R), either
z|yory]|z A primeideal P of R is said to be a ¢-strongly prime ideal if for
every a,b € R\ Nil(R), either a | bor aP C bP. In this paper, we show that if R
admits a regular ¢-strongly prime ideal, then either R does not admit a minimal
regular prime ideal and ¢(R) (the complete integral closure of R inside T(R)) =
T(R) is a ¢-CR or R admits a minimal regular prime ideal Q and c(R) = ( : Q)
is a ¢-CR with maximal ideal Q. We also prove that the complete integral closure
of a conducive domain is a valuation domain. : .

1 INTRODUCTION

We assume throughout that all rings are commutative w'th 1 # 0. We begin by

.- recalling some background material. As in [17], an integral domain R, with quotient

field K, is called a pseudo-valuation domain (PVD) in case each prime ideal P of

R is strongly prime, in the sense that 2y € Pz € K,y € K implies that either

ZT€PoryeP. In (4], Anderson, Dobbs and the author generalized the study of

pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero

zerodivisors). Recall from [4] that a prime ideal P of R is said to be strongly prime

(in R)if aP and bR are comparable (under inclusion) for all a,b € R. A ring R is

. called a pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A

is necessarily quasilocal (4, Lemma 1(b)}; a chained ring is a PVR [4, Corollary

i ,},4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition

*3.1], (2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and (14] that a

“Prime ideal P of R is called divided if it is comparable (under inclusion) to every
ideal of R. A ring R is called a divided ring if every prime ideal of R is divided.

. In{8], the author gave another generalization of PVDs to the context of arbitrary

. ¥ings (possibly with nonzero zerodivisors). As in (8], for a ring R with total quotient

- Ting T(R) such that Nil(R) (the set of all nilpotent elements of Rj is a divided
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prime ideal of R, let ¢ : T(R) — K := Byqr) such that ¢(a/b) = a/b for every
a € Randevery b€ R\ Z(R). Then ¢ is a ring homomorphism from T(R) into
K, and ¢ restricted to R is also a ring homomorphism from R into K given by
#(z) = z/1 for every € R. A prime ideal Q of ¢(R) is called a K-strongly prime
dealifzy € Q, z € K,y e K implies that either z € Q or y € Q. If each prime
ideal of ¢(R) is K-strongly prime, then ¢(R) is called a K- -pseudo-valuation ring (K-
PVR). A prime ideal P of R is called a ¢-strongly prime ideal if ¢(P) is a K-strongly
prime ideal of ¢(R). If a ¢-strongly prime ideal P of R contains a nonzerodivisor,
then we say that P is a regular ¢-strongly prime ideal. If each prime ideal of R is
¢-strongly prime, then R is called a ¢-pseudo-valuation ring (¢ — PVR). For an
equivalent characterization of a ¢-PVR, see Proposition 1.1(7). It was shown in [9,
Theorem 2.6] that for each n > 0 there is a ¢-PVR of Krull dimension n that is
not a PVR. Also, recall from [10], that a ring R is called a ¢-chained ring (¢-CR)
if Nil(R) is a divided prime ideal of R and for every £ € Ryg)y \ ¢(R), we have
2~ € ¢(R). For an equivalent characterization of a ¢-CR, see Proposition 1.1(9).
A ¢-CR is a divided ring [10, Corollary 3.3(2)], and hence is quasilocal. It was.
shown in {10, Theorem 2.7] that for each n > 0 there is a ¢-CR of Krull dimension
n that is not a chained ring.

Suppose that Nil(R) is a divided prime ideal of a commutative ring R such
that R admits a regular ¢-strongly prime. In this paper, we show that ¢(R) (the
complete integral closure of R inside T(R)) is a ¢-chained ring. In fact, we will

show that either ¢(R) = T(R) or R)=(Q:Q)={zeTR):zQ C Q} for some

minimal regular ¢-strongly prime ideal Qof R.
In the following proposition, we summarize some basic properties of PVRs, ¢-
PVRs, and ¢-CRs.

PROPOSITION1.1. 1. An integral domain is a PVR if and only if it is o ¢-
PVR if and only if it is a PVD( [1, Proposition 3.1, [2, Proposition 4.2], [6,
- Proposition 3/, and [8]).

2. A PVR is u divided ring [4, Lemma 1 ], and hence is quasilocal.

3. Aring R is a PVR if and only if for every a,b € R, eithera |bin R orb| ac
in R for each nonunit c in R [{, Theorem 5].

4- If R is a PVR, then Nil(R) and Z(R) are divided prime ideals of R (4], [8]).
5. A PVR is a $-PVR [8, Corollary 7(3)).

6. If P is a ¢-strongly prime ideal of R, then P is o divided prime. In particular,
if R is a ¢-PVR, then R is a divided ring [8, Proposition {], and hence is
quasilocal. :

7. Suppose that Nil(R) is a divided prime ideal of R. Then a prime ideal P of
R is ¢-strongly prime if and only if for every a,b € R \ Nil(R), either a | b
in R or aP C bP. In particular, a ring R is a ¢-PVR if and only if for every
a,b € R\ Nil(R), either a|bin R or b | ac in R for every nonunitc € R {8,
Corollary 7). ‘ .

8. Suppose that Nil(R) is a divided prime :deal of R. If P is a ¢-strongly prime
ideal of R and Q is a prime ideal of R contained in P, then Q is a ¢-strongly
prime ideal of R [8, Proposition 5].
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9. Suppose that Nil(R) is a divided prime ideal of R. Then a ring R is a ¢-CR
if and only if for every a,b € R\ Nil(R), eithera|[bin R orb|a in R [10,
Proposition 2.9]. - »

10. A ¢-CR is a ¢-PVR [10, Corollary 2.9 0

2 The COMPLETE INTEGRAL CLOSURE OF
RINGS THAT ADMIT A REGULAR
4#STRONGLY PRIME IDEAL

Throughout this section, Nil(Il) denotes the set of all nilpotent elements of R,
.Z(R) denotes the set of all zerodivisor elements of R, and c(R) denotes the complete
integral closure of R inside T'(R). The fc»ilowmg two lemmas are needed in the proof
of Proposition 2.3. '

LEMMA 2.1. Suppose Nil(R) is o divided prime ideal of R and P is a regular &—

strongly prime ideal of R. If s is a regular element of R and z € Z(R), then s | 2
in . In particular, Z(R) C P.

Proof: Let s be a regular element of P and z € Z(R). Suppose that s [z in R.
Then sP C zP by Proposition 1.1(7). Since s € P, we have z | s in R, which
is impossible. Hence, s | z in R. Thus, Z(R) C P. Now, suppose that s is a
regular element of R\ P. Since P is divided by Proposition 1.1(6), we conclude
that P C (s). Hence, since Z (R) C P, we conclude that s | z in R. O

LEMMA 2.2. Suppose that Nil(R) is a divided prime ideal of R and P is a regular
¢-strongly prime ideal of R. Then z™'P C P for each z € T(R)\ R. In partzcular
if z € T(R)\ R, then z is a unit of T(R).

Proof: First, observe that Z(R) C P by Lemma 2.1. Now, let z =a/be T(R)\ R
for some a € R and for some b € R\ Z(R). Since b Yain R, Z(R) C P,and P is
divided, we conclude that a € R\ Z(R). Hence, 27! € T(R). Thus, since b fa in
R we have bP C aP by Propositionl.1(7). Thusz'!P=tPc P. O

In light of the Lemmas 2.1 and 2.2, we have the following proposition.

PROPOSITION 2.3. Suppose that Nil(R) is o divided prime ideal of R and P is a
reqular prime ideal of R. Then the following statements are equivalent:

1. P is o ¢-strongly prime ideal of R.
2. (P: P) is a ¢-CR with mazimal ideal P.

Proof: (1) = (2). First, we show that P is the maximal ideal of (P : P). Let
s € R\ P. Then s is a regular element of R (because P is a divided regular prime
ideal of R, and therefore Z(R) C P). Hence 1/s € (P : P). Thus, s is a unit of
(P : P). Hence, P is the maximal ideal of (P : P). Now, we show that (P:P)is
a ¢-CR. Since Nil(R) is a divided prime ideal of R, Nil((P : P)) = Nil(R). Let
2,y € (P : P)\ Nil(R) and suppose that z fy in (P : P). Then z =a/s, y = b/s
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for some a,b € R\ Nil(R), and some s € R\ Z(R). Since z Jy in (P:P)itis
impossible that @ be a regular element of R and b € Z(R). Thus, we consider three
cases. Case 1: suppose that a € Z(R)and b€ R\ Z(R). Then b {ain R by Lemma
2.1. Hence, y [z in (P : P). Case 2: suppose that a,b € R \ Z(R). Since z Yy

~in (P : P), we conclude that w — ¥/z € T(R)\ R. Hence, w™'P = 2P C Pby

Lemma 2.2. Hence, y |z in (P: P). Case 3: suppose that a,b € Z(R). Since Yy
in (P : P), we conclude that g Ybin R. Thus, aP C bP by Proposition 1.1(7). Let
I be a regular element of P. Then ah — be for some ¢ € P. Suppose that A |ein
R. Thenb|ain R. Hence, y |z in (P : P). Thus, suppose that k Ycin R. Then, ¢
is a regular element of P. Hence, f = ¢/h € T(R)\ R. Thus, f~1P = Apc Py
Lemma 2.2. Hence, f-! ¢ (P : P). Thus, ah = bc implies that zf~!' =y. Hence,
2 |yin (P: P), a contradiction. Thus, h | ¢in R, and therefcre y|lzin(P: P).
Hence, (P : P) is a ¢-CR by Proposition 1.1(9). (2) = (1). This is clear by

Proposition 1.1(10). O

PROPOSITION 2.4. Suppose that N il(R) is a divided prime ideal of Rand P is a
reqular ¢-strongly prime ideal of R. Then Q = N2, (s%) is a prime ideal of R for
every reqular element s of P. ’

Proof: Suppose that zy € Q for some z,y € R. Since Z(R) C (s*) for each i >1
by Lemma 2.1, we conclude that Z (R) € Q. Hence, we may assume that neither
# € Z(R) nor y € Z(R). Thus, assume that & Q. Then s™ Jz for some n > 1.
Hence, s"P C zP by Proposition 1.1{7). In particular, since s™ € P, we have
s C 2P. Hence, we have zy € (s>*) C z5'P C (zs') for every ¢ > 1. Thus,
y € (s%) for every ¢ > 1. Hence, y € Q.0 :

PROPOSITION 2.5. Let P be a regular prime ideal of R. Then (P: P) C ¢(). i

Proof: Let z € (P : P), and let s be a regular element of P. Then sz € P for
every n 2> 1. Hence, z is an almost integral element of R. Thus, z ¢ e(R). O

PROPOSITION 2.6. Suppose that Nil(R) is o divided prime ideal of Rand P is a
regular ¢-strongly prime ideal of R. Then T(R) is a o-CR.

Proof: First, observe that Nil (T(R)) = Nil(R). Hence, it suffices to show that
if a,b € R\ Nil(R), then either [bin T(R)orb | ain T(R). Hence, let
a,b € R\ Nil(R). Suppose that a /b in T(R). Then a fbin R. Hence, aP C bP by
Proposition 1.1{7). Thus, let s be a regular element of P. Then as = be for some
c€ P. Thus, a = b%. Hence, b|ain T(R). O

Now, we state our maia result in this section
*

THEOREM 2.7. Suppose that Nil(R) is o divided prime ideal of R and P is o
regular ¢-strongly prime ideal of R. Then ezactly one of the following statements

must hold:

1. R does not admit ¢ minimal regular ;';rime tdeal and ¢(R) = T(R) is o ¢-CR.

2. R admits o minimal reguiar prime ideal Q and ¢(R) = (Q : Q) is a ¢-CR with
mazimal ideal (.
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Proof: (1). Suppose that R does not admit a minimal regular prime ideal. We
ﬁﬂshowthatl/a&c(ﬁ]foreve:yregdardmenta_eﬂ. Hence, let s be a regular
element of R. Suppose that s € R\ P. Then 1/s € (P : P) because P is a divided
prime ideal of Rbyl’mpoaitian;l_.‘l(ﬁ). Hence 1/s € (P : P) C ¢(R) by Proposition
2.5. Thus, suppose that s € P. Wewﬂlahowthazthereisraglﬂarprimeideal
H C P such that s € H. Deny. Let F = {D : D is a regular prime ideal of R
and D C P} and N = NpepD. Then, s € N. Now, by Proposition 1.1(8) and (6),
mmdudethﬂmpﬁmeidaahinthamFmﬁmlyordemd. Hence, N is a
minimal regular prime ideal of R, which is a contradiction. Thus, there is a regular
prime ideal H# C P such that s ¢ H. Hce.omeagainI/cE(H:H)Cc(R) by
Proposition 2.5. Thus, ¢(R) = T'(R). Now, T(R) is a ¢-CR by Proposition 2.6.
(2). Suppose that Q is a minimal regular prime ideal of R. First, observe that
@ C P by Proposition 1.1(6). Thus, Q is a minimal ¢-strongly prime ideal of R by
Proposition 1.1(8). Now, (Q : Q) C ¢(R) by Proposition 2.5. We will show that
«R)C(Q: Q). Suppose there is an z € ¢(R) \ R. Then z is a unit of T(R) by
Lemma 2.2. We consider three cases. Case 1: suppose that z~ €T(R)\ R. Then
zQ C Q by Lemma 2.2. Hence, z € (Q : Q). Case 2: suppose that z=! € R\ Q.
Then Q C (z™') by Proposition 1.1(6). Thus, z € (Q : Q). Case 3: suppose
that 2! € Q. This case can not happen, for if z~! € Q, then D = N, (z™)f
¥ o:mtainsaregularelentobeeoauaezEc(R).ButDisaprimeidealobey
] Proposition 2.4. Hmm,Disamguhrpﬁmeidealothhatiapmperlyomtained
in Q. A contradiction, since Q is a minimal regular prime ideal of R. Hence,
e(R)=(Q: Q). Now, c(R) = (Q : Q) is a ¢-CR by Proposition 2.3. O
SuppmethatNﬂ[R)isadividedpnme' idea.lofRandP;éNil(R)isao)-
strongly prime ideal of R. Then observe that Nil(¢(R)) is a divided prime ideal of
¢(R) and ¢(P) is a regular K-strongly prime ideal of #(R) (recall that J = Ryug))-
Now, since ¢(B)wug(ry) = Kna(r), we may think of #(P) as a ¢-strongly prime
ideal of ¢(R). In light of this argument and Theorem 2.7, we have the following
‘coroilary.

COROLLARY 2.8. Suppose that Nil(R) is a divided prime ideal of R and P #
Nil(R) is a ¢-strongly prime ideal of R. Then ezactly one of the following state-
‘menis must hold:

. 1. §(R) does not admit & minimal regular prime ideal and c(¢(R)) = T(¢(R)) =
b KN“‘R] s ¢ K-CR.

" 2 9(R) admits a minimal regular prime ideal @ and c(d(R)) = (Q : Q) is a
K-CR.O

\,. ‘COROLLARY 2.9. Suppose that R admits a regular strongly prime ideal. Then
_ ! - ezactly one of the statements in Theorem 2.7 must hold. O

~ COROLLARY 2.10. Suppose that an integral domain R admits a nonzero strongly
s ;\l'lme ideal of R. Then ezactly one of the statements in Theorem 2.7 must hold
(observe that in this case ¢(R) is a valuation domain). O

' COROLLARY 2.11. Suppose that Nil(R) is a divided prime ideal of R and P is a
. Teqular ¢-strongly prime ideal of R. If P contains a finite number, say n, of regular
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COROLLARY 2.12. Suppose that R is o Priifer domain such that J(R) containg q
nonzero prime ideal of R. Then ezactly one of the statements in Theorem 2.7 must
hold (once again, obserye that in this case c(R) is a valuation domain).

Proof: Let P be a nonzero prime ideal of\R such that P C J(R). Then Pis a

strongly prime ideal by {11, Proposition 1.3, and the proof of Theorem 4.3].. Hence,
the claim is now clear. 00

It is well-known [17, Proposition 3.2) that if Ris a Noetherian pseudo-valuation
domain (which is not a field), then R has Krull dimension one. The following is an
alternative proof of this fact.

PROPOSITION 2.13. ({17, Proposition 3.2]). If R is a Noetherian pseudo-valuation -
domain (which s not o field), then R has Krull dimension one.

Proof: Deny. Let M be the maximal ideal of R, Then there is a nonzero prime
ideal P of R such that PCMand M # P. Hence, there is an element m ¢ M \P.
Since P is divided, we have P C (m). Thus, 1/m € c(R). Since R is Noetherian,

1/m is also integral over R, which is impossible, Hence, R has Krull dimension one.
O :

3 THE COMPLETE INTEGRAL CLOSURE OF
CONDUCIVE DOMAINS

Rtad(I) denotes the radical idea] of R. Recall from [1 1], that Houston and the author
defined an ideal T of R to be powerful if, whenever zy € I for elements T,y € K,
we have z € Ror y € R. Algo, recall that in (13, Theorem 4.5 Bastida and Gilmer
proved that a domain R shareg an ideal with a valuation domain iff each overring
of R which is different from the quotient field X of R has a nonzero conductor to
1. Domains with this property, called conducive domains, were explicity defined
and studied by Dobbs and Fedder {15], and further studied by Barucci, Dobbs, and

Fontana (12] and (16]. In [11, Theorem 4.1}, Houston and the author proved the
following result.

PROPOSITION 3.1. (/11, Theorem 4.1]) An integral domain R is 4 conducive
domain if and only if R admits a powerful ideal. O

- The following proposition is needed in the proof of Theorem 3.2.

PROPOSITION 3.2. ((11, Theorem 1.5 and Lemma 1.1]). Suppose that I is o

proper powerful ideal of R. Then I* C (s) for every s € R\ Rad(I), andz-'I2 c R
for everyz e K\ R. O ‘
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Now, we state the main result of this section.

THEOREM 3.3. Suppo,se that R admits a nonzero proper powe:ﬁd‘ tdeal I, that 13,
"R is a conducive domain. Then ezactly one of the Jollowing two statements must

hold: < .
1. NS, I # 0 and ezactly one of the following two statements must hold:

(a) R does not admit o minimal regular prime ideal and /c(R) =K isa
valuation domain. : , : :

(b) R admits a minimal regular prime ideal Qandc(R) = (Q: Q) is q
valuation domain. '

2. NgL,I™ = 0 and ¢(R) = {re K:zn ¢ Rad(I) for every n 21} isa
valuation domain. ' .

Proof: '(1). Suppose that P = NZZ1I" # 0. Then P is a nonzero strongly prime

ideal of R by [11, Proposition 1.8]. Hence, the claim is now clear by Theorem 2.7.
' (2)'Suppose that P = Mzl =0.Let S={z e K : " & Rad(I) for every

n > 1}, and let z € ¢(R). We will show that z € S. Since P = 0 and z € ¢(R),

z~" ¢ I for every n > 1. Hence, z € §. Thus, ¢(R) C S. Now, let s € S. We will
) ~ show that 5 € ¢(R). Let d be a nonzero element of I2. Hence, for every n > 1 we
~° haveecither s ¢ K\Rors™" € R\ Rad(I). Thus, ds" € R for every n > 1 by

- Proposition 3.2 Hence, s € ¢(R). Thus, S C ¢(R). Therefore, $.= c(R). Now, we

 show that c(R) = § is a valuation domain. Let 2 € K\ S. Then 2" € Rad(J)
for some n > 1. Hence, " ¢ Rad(I) for everyn > 1. Thus, 2! ¢ §. Therefore,
¢(R) = § is a valuation domain. O ‘
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